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Abstract— Meteorological phenomena, in particular rapid events 

with local dynamics such as the onset of heavy rainfall, may have 

several instantaneous impacts on human behaviour. These 

impacts include, for example, the utilization of private or public 

transportation or the scheduling of personal and business 

activities. Given the increasing accuracy of weather forecasting 

at any scale, understanding the relationship between weather 

patterns and collective mobility behaviour or activity can 

potentially provide valuable insights into understanding urban 

dynamics and/or demand for public resources such as 

transportation. Scientific studies show that user-generated traffic 

in wireless communication networks can serve as a proxy for 

spatio-temporal patterns of human behaviour. In this paper we 

explore the relationship between weather and mobile phone 

usage and indirectly on human behaviour. We link the time-

space pattern of meteorological measurements with that of 

mobile phone usage in the same large scale area (a region in 

Northern Italy). Taking the spatial context into account, we 

compare frequency-domain statistics correlations between 

weather and telecom activity and how they change between 

mountainous, urban, and coastal areas. The results indicate 

significant relationships between weather conditions, telecom 

activity, and area type. 
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INTRODUCTION 

Today, we witness an increasing use of user-generated 

traffic in wireless communication networks to analyse spatio-

temporal patterns of human activities [1-3]. Several scientific 

studies link such patterns to other data in order to explore, for 

example, the structure of social networks [4], the physical 

environment [5], or city dynamics [6], [7]. Human activity 

patterns of both individuals [8] and the communities [9] have 

been evaluated to disclose patterns that can assist urban 

planning and transportation analysis. 

Within the environmental monitoring domain, the amount 

and the availability of digital information based on near real-

time sensor measurements have been rapidly increasing over 

the last few years [10], [11]. These sensor measurements 

quantify rainfall, temperature, particulate matter, 

concentration of trace gases etc. Distributed geo-sensor 

networks in combination with Geographic Information 

Systems (GIS) are indeed employed to automatically generate 

multi-dimensional information beyond point measurements 

through web-based geo-processing routines [12] and geo-

spatial cloud computing [13]. 

However, the consideration of “exogenous factors”, 

specifically environmental phenomena mentioned above, has 

been primarily addressed for sensor network design purposes 

(e.g. [14]) rather than integrated into the analyses of human 

activity patterns. Such integration in combination with geo-

spatial analysis and GIS enable novel capabilities to monitor 

the status of the environment in a more integrated and 

intelligent manner. 

Bridging the gap between large-scale collective social 

sensing and environmental monitoring can potentially disclose 

useful insights into the instantaneous interactions between 

people and their environmental context factors. From an 

integrated geo-sensing perspective, such insights might have 

far-reaching impacts, for example on time-critical decision 

making. 

Within this research, mobile phones are considered 

ubiquitous sensors capable of disclosing communication 

behaviour and whereabouts of their users. The traffic within a 

“large-scale sensor network” – the mobile network – thus 

reflects spatio-temporal communication characteristics and 

movement patterns of hundreds of thousands of subscribers. 

Hence, the following research question arises: Can a 

significant relationship between weather conditions and 

mobile phone activity – and indirectly human behaviour – be 

revealed by examining their digital measurements from geo-

sensing technologies? 

In this paper we link meteorological in-situ sensor 

measurements to collective mobile phone usage derived from 

user-generated cellular network traffic. Subsequent analyses 

include factor- and spectral analysis. Taking the regional 

context into account, we compare analyses results among 

mountainous, urban, and coastal landscapes in Northern Italy. 

The next section explains the methodology. Section III 

describes the case study including test areas selected and data 

sets used. Section IV presents experimental results followed 

by a critical discussion in Section V. Finally, in Section VI, 

conclusion and future research interests are given. 



METHODOLOGY 

A. Data Acquisition and Information Retrieval 

We employ two inherently independent sensing 

technologies to monitor the current state of environmental and 

human dynamics: (1) in-situ multi-sensor nodes for measuring 

environmental parameter, and (2) mobile phone networks for 

indirectly sensing human behaviour. 

1) In-Situ Sensors:  In-situ multi-sensor nodes measure a 

diversity of environmental parameter relating weather 

(temperature, precipitation etc.), air quality (trace gases, 

particulate matter etc.), hydrological conditions (river gauges, 

surface runoff etc.) and so on. Such sensor nodes include 

highly mobile and intelligent sensor pods [15] as well as fixed 

sensor stations [16]. By requesting measurements from such 

sensor nodes, we are capable of monitoring and analysing 

environmental dynamics near real-time. 

2) Mobile Phone Networks:  User-generated traffic in such 

“large-scale sensor networks” reflects spatio-temporal 

behavioural patterns of their users. Moreover, depending on a 

provider’s market share and mobile penetration rate, these 

patterns reflects to some degree the dynamics of the larger 

population. In order to derive spatio-temporal information 

from a huge volume of raw mobile network traffic data a 

semi-automated (geo-)processing workflow has been 

developed (not further described in this paper). 

B. Analysis Methods 

In contrast to techniques applied in previous mobile 

network traffic research such as eigen-decomposition [17] or 

multi-level regression analysis [9], we integrate weather data 

and focus on potential temporal relationships between weather 

and telecom data. 

1) Factor Analysis:  An exploratory factor analysis (EFA) 

has been undertaken to reduce dimensionality and redundancy 

in a number of meteorological variables. EFA is utilized to 

extract underlying and interrelating structure in the data. 

Resulting factors should account for simple weather 

conditions such as favourable/non-favourable and 

positive/negative, respectively. 

2) Spectral Analysis:  A spectral analysis (SA) has been 

performed to unveil significant periodical components in the 

time series of the remaining factors (output of EFA) and 

mobile telecom traffic intensity. The squared spectral 

coherence – the spectral equivalent of the R² in regression 

analysis [18] – is computed to evaluate the relationships 

between weather conditions and mobile phone traffic. 

C. Limits and Constraints 

A variety of different factors influence the status of the 

environment and of human behaviour. This includes for 

example (heavy) industry, large public events, construction 

areas, traffic jams etc. Most of them are hardly detectable; 

many of them are too complex to sense. Here we consider 

“only one” context factor that might influence mobile phone 

usage, namely weather conditions. 

CASE STUDY 

To answer our research question stated above we 

performed a case study in Northern Italy. Emphasis was put 

on small-scale (spatial dimension: ~30 km²) and short-term 

(temporal dimension: 1 day) dynamics of weather, and mobile 

phone usage. 

A. Study Areas 

To take into account the environmental and land-use 

context we study three different areas: 

• Urban area: a small city – around 100,000 inhabitants; 

• Mountainous area: a sparsely populated area 

characterized by an economy that depends on low-scale 

farming and tourism (e.g. outdoors, skiing, or hiking); 

• Coastal area: a popular beach holiday area, populated 

mainly in the summer season; 

B. Datasets used 

We used data for the period between September 10
th

 and 

September 20
th

 2009 for the Region Friuli Venezia Giulia, 

Italy. 

1)  Meteorological Data:  We used the following five 

parameters: rainfall, air temperture, relative humidity, air 

pressure, and solar radiation. All measurements are hourly 

averages and are measured by accurately calibrated weather 

stations used for regional weather forecasting by the regional 

environmental agency. 

2)  Mobile Network Traffic Data:  Anonymized and 

aggregated volumes of traffic data were provided by a 

network operator in raster and vector formats at 15-minute 

intervals. Traffic intensity measured in erlang
1
 is represented 

as a regular 250m x 250m regular raster fully covering the 

study areas. 

The datasets have been consolidated on a GIS platform and 

associated to the same underlying space-time basis: within a 

three kilometre buffer zone around each of the weather 

stations, the meteorological parameters used are assumed to 

be homogenous. Then, for the resulting three buffers, the 

zonal statistics of mobile phone traffic intensity has been 

calculated on an hourly basis. 

EXPERIMENTAL RESULTS 

In this section we describe the analysis for the urban area. 

The analysis for the other two areas follows the same 

methodology. 

A. Preparation for Exploratory Factor Analysis of 

Meteorological Variables 

As stated above we consider five meteorological variables, 

namely rainfall R, air temperature AT, relative humidity RH, 

air pressure AP, and solar radiation SR. For an exploratory 

factor analysis a sufficient number of significant correlations 

among the five variables are needed [19]. We therefore apply 

                                                           
1 Dimensionless basic unit of telecom traffic intensity, named after A. K. 

Erlang: 1 erlang = 1 person calling 1 hour, or 2 persons calling 0.5 hour 

each, or three persons calling 20 minutes each… 



the Bartlett’s test of sphericity [20], and the Kaiser-Meyer-

Olkin (KMO) test [21]. Regarding the former test, the 

expected χ² with ten degrees of freedom (df) and a 

significance level α < 0.001 is equal to 29.5880 (according to 

the standard table for critical values of the χ² distribution). 

Since the calculated χ² value of 697.042 – shown in Table 1 – 

is considerably higher than the expected χ² value (697.042 >> 

29.5880), the null hypothesis (Ho: the correlation matrix is the 

identity matrix) is rejected. This in turn means that there is 

significant correlation among the five variables. With respect 

to the KMO test, Table 1 shows that the overall KMO 

Measure of Sampling Adequacy (MSA) of 0.710 indicate a 

“middling” relative relationship between Pearson’s correlation 

and partial correlation among all variables [21]. This value is, 

nevertheless, sufficient to perform a factor analysis. 

TABLE I 

KMO AND BARTLETT’S TEST (URBAN) 

,710

Approx. Chi-Square 697,042

df 10

Sig. ,000

Kaiser-Meyer-Olkin Measure of Sampling Adequacy

Bartlett 's Test 

of Sphericity

 
In addition to the overall KMO MSA, the individual MSA 

indicates how strongly each meteorological parameter is 

correlated with all the others. All individual MSAs are > 0.6, 

as shown in the main diagonal in the Anti-Image Correlation 

Matrix (Table 2). These confirm the overall KMO test and 

indeed approve the involvement of all items. The correlation 

matrix is therefore factorable. 

TABLE II 

ANTI-IMAGE CORRELATION MATRIX  

OF FIVE METROLOGICAL VARIABLES (URBAN) 

R AT RH AP SR

R ,774a -,011 -,076 ,267 ,023

AT -,011 ,669a ,656 ,034 -,544

RH -,076 ,656 ,720a ,342 ,079

AP ,267 ,034 ,342 ,645a ,181

SR ,023 -,544 ,079 ,181 ,770a

a . Mea s ures  o f Sampling Ade quacy (MSA)
 

Similar results have been achieved for the mountainous and 

the coastal environment as summarized hereafter. 

• Mountainous: calculated χ² = 611.970 (df = 10, α < 

0.001); overall KMO MSA = 0.661; all individual 

KMO MSA values > 0.6 

• Coastal: calculated χ² = 476.612 (df = 10, α < 0.001); 

overall KMO MSA = 0.646; all individual KMO MSA 

values > 0.6 

We conclude from these results that there are a sufficient 

number of significant correlations among the five items. This 

is a proper basis for performing an exploratory factor analysis 

of the five meteorological measurements (R, AT, RH, AP, and 

SR) for the urban, mountainous, and the coastal landscape. 

B. Exploratory Factor Analysis of Meteorological Variables 

The next step is to determine the factor extraction method. 

Our intention is to find, in a descriptive way, the underlying 

uncorrelated constituents in the data. For this we select the 

Principal Component Analysis (PCA) method. 

As shown in Table 4, 78.955% of the total variance (i.e. 

specific, common, and error variance) is explained by two 

principal components with eigenvalues greater than one. The 

number of two principal components is indeed confirmed by 

scree plot evaluation (according to [22]). The rotated 

component matrix shown in Table 3 summarizes the final 

loadings of the five meteorological variables for the two 

orthogonal principal components extracted. 

TABLE III 

LOADINGS OF THE FIVE METEOROLOGICAL PARAMETERS (URBAN) 

1 2

R -,076 ,808

AT ,942 -,165

RH -,864 ,334

AP ,174 -,810

SR ,911 ,003

Principal Component

Extrac tio n M etho d: P rinc ipa l Co mpo nent Analys is . 

 Ro ta tio n Me tho d: Varimax with Kais er No rmaliza tio n.
 

Principal component 1 is heavily positively loaded by air 

temperature and solar radiation, and heavily negatively loaded 

by relative humidity – which correspond to nice weather 

conditions. We, therefore, term the first component “Nice 

Weather”. In contrast, principal component 2 is heavily 

positively loaded by rain; moderately positively by relative 

humidity; strongly negatively by air pressure. Since these 

loadings indicate adverse weather conditions, we term this 

second component “Bad Weather”. 

The presence of periodic elements in the three remaining 

time series “Nice Weather” (PC 1), “Bad Weather” (PC 2), 

and “Mobile Telecom Traffic” are obvious in the time domain 

(Fig. 1 shows the three time series for the urban area). To 

explore such periodic patterns and their potential relationships 

within these time series, they are input for frequency domain 

analysis. 

 
Fig. 1: Periodic patterns in the time domain: 10 days of three standardized 

variables for the urban environment 

Similar underlying principal components have been 

extracted for the mountainous (Table 5) and the coastal area 

(Table 6). 

Thus, for all three environments – urban, mountainous, and 

coastal – we term the first principal component as “Nice 

Weather” and the second as “Bad Weather”. The respective 

component scores used for further analyses have been 

estimated using the Anderson-Rubin approach [23]. The 

resulting new variables are therefore standardized. 



TABLE IV 

EXPLANATION OF TOTAL VARIANCE IN FIVE METEOROLOGICAL VARIABLES BY TWO PRINCIPAL COMPONENTS (URBAN) 

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2,805 56,095 56,095 2,805 56,095 56,095 2,500 50,008 50,008

2 1,143 22,860 78,955 1,143 22,860 78,955 1,447 28,947 78,955

3 ,666 13,316 92,271

4 ,265 5,290 97,561

5 ,122 2,439 100,000

Extrac tio n Metho d: P rinc ipa l Co mpo nent Analys is .

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

 
 

TABLE V 

LOADINGS OF THE FIVE METEOROLOGICAL PARAMETERS (MOUNTAINOUS) 

1 2

R -,262 ,733

AT ,909 -,201

RH -,778 ,395

AP ,001 -,898

SR ,939 ,054

Principal Component

Extrac tio n M etho d: P rinc ipa l Co mpo nent Analys is . 

 Ro ta tio n Me tho d: Varimax with Kais er No rmaliza tio n.
 

TABLE VI 

LOADINGS OF THE FIVE METEOROLOGICAL PARAMETERS (COASTAL) 

1 2

R ,006 ,730

AT ,885 -,216

RH -,801 ,445

AP ,222 -,758

SR ,842 ,110

Principal Component

Extrac tio n M etho d: P rinc ipa l Co mpo nent Analys is . 

 Ro ta tio n Me tho d: Varimax with Kais er No rmaliza tio n.
 

C. Spectral Analysis of Weather and Mobile Telecom Traffic
2
 

For each environment – urban, mountainous, and coastal – 

the periodogram of “Mobile Telecom Traffic” shows the main 

and first peak at a frequency f1 = 0.0417/h, thus a period T1 = 

1/f1 = 24 hours. This first harmonic indicates, intuitively, the 

predominance of the day-night pattern. The second (f2 = 

0.0833/h � T2 = 12h) and the third harmonic (f3 = 0.125/h � 

T3 = 8h) contribute ~6% and ~12%, respectively, of the first 

harmonic’s magnitude. Depending on their phasing, these two 

harmonics affect – per day for the graph in the time domain – 

the double-peak at noon and signifies working/non-working 

hours [9], [14] (see Fig. 1 Mobile Telecom Traffic). 

In the bivariate spectral analysis, “Mobile Telecom Traffic” 

is considered the dependent variable and “Nice/Bad Weather” 

is considered the independent one. Cospectral density plots do 

not expose much new information due to the power of 

day/night pattern. In contrast, additional periodic components 

arise when emphasis is put on the squared spectral coherence 

γ² – the squared magnitude of the cross-spectrum – of the 

aforementioned variables and, indeed, taking the different 

scenic context into account. “Within each frequency band, the 

squared coherence (like an R² in regression analysis) estimates 

the percentage of the variance in time series X that is 

                                                           
2 Note: each of the data points in the time series represents one hour, thus the 

sampling frequency is 1/hour. 

predictable from time series Y, within this particular 

frequency band” [18] (p138). The results below illustrate the 

squared coherence of mobile network traffic and weather – 

this corresponds to the time series X and Y respectively cited 

above. We elaborate on dominant sinusoidal components with 

8h ≥ T ≥ 24h because of the presence of the three harmonics 

and the total time interval covered by the data (10 days). For 

all these components, the hypothesis of zero coherence is 

rejected [24]. Numbers (1, 2, and 3) within the figures 

correspond to the number of the harmonic. 

1) Urban Context:  Addressing “Nice-Weather“, the 

three most significant peaks (1, 2, 3) are at harmonic 

frequencies with T = 24h, 12h, 8h (Fig. 2). 

 
Fig. 2: Urban: spectral correlation of “Nice Weather” and z-erlang 

 
Fig. 3: Urban: spectral correlation of “Bad Weather” and z-erlang 

At “Bad Weather” conditions, Fig. 3 shows less significant 

coherence at harmonic frequencies in general and at the 

second harmonic in particular – in comparison with Fig. 2. 

Furthermore, peak 3 has a considerably smaller peak-width. 

2) Mountainous Context:  The first two peaks in Fig. 4 

(1, 2) are as dominant as is Fig. 2 (T1 = ~24h, T2 = ~12h). 

When including peak 3 (T3=~8h), the squared coherence does 



not drop below 0.22 (dashed line) within the spectrum of the 

harmonics. Fig. 5 shows significant peaks at f = 0.015/h (T = 

66h = 2.7d), T = ~24h (1), and T = ~12h (2). 

 
Fig. 4: Mountainous: spectral correlation of “Nice Weather” and z-erlang 

 
Fig. 5: Mountainous: spectral correlation of “Bad Weather” and z-erlang 

3) Coastal Context:  The coherence between “Nice 

Weather” and “Mobile Telecom Traffic” show dominant 

peaks (1, 2) at T = ~24h, and ~12h, respectively (Fig. 12). 

 
Fig. 6: Coastal: spectral correlation of Nice Weather” and z-erlang 

 
Fig. 7: Coastal: spectral correlation of “Bad Weather” and z-erlang 

Focusing on “Bad Weather” condition in the costal test area 

the first harmonic’s peak has a magnitude of 0.7, whereas 

peak 2 (T = ~12h) has a half of it (0.35). 

DISCUSSION 

Most of the power of the relationship between weather and 

mobile telecom traffic is, as expected, centred on their 

harmonics. This reflects the predominant day/night pattern of 

all variables considered in general (T = 24h) and mobile 

telecom traffic in particular (plus T = 12h, and 8h) as this 

signifies working/non-working hours within the daily circle 

[9]. 

In the urban context “Nice weather” (γ² ≤ 88%) rather than 

“Bad Weather” (γ² ≤ 75%) spectrally correlates with mobile 

telecom traffic at harmonics (Fig. 2 and Fig. 3). At the second 

harmonic (peak 2: T = 12h), γ² is significantly lower at “Bad 

Weather” as compared to “Nice weather” conditions (38% << 

88%). This indicates that nice weather conditions explain 

more of the variance in mobile telecom traffic data, in 

particular during working hours. 

Nice weather conditions in the mountainous area (Fig. 4) 

lead to an overall “high energy level” between peak 1 and 

peak 3 since this explains more than 22% of the variance in 

mobile telecom traffic within the entire spectrum of the three 

harmonics. Although this indicates a strong spectral 

relationship, it also indicates higher daily variation of both 

“Nice Weather” and “Mobile Telecom Traffic” (Fig. 4) 

compared to bad weather conditions (Fig. 5). 

For the coastal place, “Nice Weather” explains twice the 

variance in mobile telecom traffic at the 12h peak (γ² = 70%) 

compared to “Bad Weather” (γ² = 35%) as shown in Fig. 6 

and Fig. 7. The same proportion is available for the 8h peak 

(3). This indicates that nice weather conditions better explain 

the working/non-working pattern within the underlying daily 

circle than bad weather conditions. 

A common noteworthy spike at f~0.06/h (T ~ 16h), marked 

with an ‘x’ in Fig. 3, can be identified in the urban and 

mountainous but not in the coastal context. This spike is 

difficult to interpret and needs further investigation. 

Additionally, the very first peak in Fig. 2, and Fig. 5 to Fig. 7 

at f ~ 0.0075/hour (T = ~ 5.5 days) might designate another 

periodic component, possibly the weekdays/weekend patterns 

as argued in [9]. 

Hence, for all three spatial environments – urban, 

mountainous, and coastal – “Nice Weather” rather than “Bad 

Weather” strongly covary with mobile telecom traffic in the 

frequency domain. The squared spectral coherence estimation 

indeed identified significant individual sinusoidal components 

with T = 24h, 12h, and 8h. These components together signify 

the predominant day/night pattern (24h) and particularly the 

working/non-working pattern (12h and 8h). Transferred back 

to the time-domain, this means a stronger temporal correlation 

of nice weather conditions with telecom traffic as compared to 

bad weather and telecom traffic. 

 

 

 



CONCLUSION AND OUTLOOK 

In this paper we illustrated a novel approach to explore the 

relationships between weather conditions and mobile phone 

usage. Meteorological measurements of rainfall, air 

temperature, relative humidity, air pressure, and solar 

radiation as well as user-generated mobile network traffic 

have been correlated and analysed on a common space-time 

basis for three different spatial environments in Northern Italy. 

Factor analysis of meteorological variables resulted in two 

principal components, termed „Nice weather“, and „Bad 

Weather“. Spectral analysis of the remaining datasets revealed 

underlying periodic relationships between weather conditions 

and mobile phone traffic within and across the respective 

spatial environments. Results show that “Nice Weather” 

conditions manifest significant relationships – expressed by 

their squared spectral coherence – with mobile telecom 

activity. 

From a methodological point of view we conclude that 

explanatory factor analysis and squared spectral coherence 

estimation can be fruitfully utilized in the geo-sensing domain.  

We also verified significant relationships between 

“exogenous factors”, i.e. quantifiable environmental 

phenomena, and large-scale collective social behaviour 

indirectly measured through mobile phone usage.  

However, it is important to underline that the assumption of 

linearity between weather and mobile phone usage is at best 

an approximation of the complex relationship between these 

variables (see also section II.C). 

This research is, to our best knowledge, the first case study 

in the geo-sensing domain that consolidates and examines 

digital measurements of environmental and human related 

phenomena by utilizing factor analysis and spectral analysis. 

Further research will first of all assess the validity and the 

reliability of the results obtained when the methodology 

presented in this paper is applied to a larger data sample (for 

instance a one-year time series of environmental and telecom 

data) and to other area types. The expectation is that time 

patterns with a longer period (seasonal variations, work-

holiday patterns, and generic weather patterns) will provide 

additional insights in the relationship between weather and 

human activities, and that this relationship could structurally 

depend on certain land-use factors. 

Another angle of investigation is the elaboration of „pink 

noise” – e.g. exposed by filtering out harmonics – hidden in 

mobile network traffic’s periodic components. Of particular 

interest is the potential interrelationship of that pink noise 

with small fluctuations of environmental conditions. 
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