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Abstract

Most work in NLP analysing microblogs focuses on textual content thus neglecting temporal and

spatial information. We present a new interdisciplinary method for emotion classification that

combines linguistic, temporal, and spatial information into a single metric. We create a graph of

labeled and unlabeled tweets that encodes the relations between neighboring tweets with respect

to their emotion labels. Graph-based semi-supervised learning labels all tweets with an emotion.

1 Introduction and Motivation

Social media analysis is a field where natural language processing (NLP) and geographic information

science (GIScience) overlap, because messages posted in social media frequently contain both textual

and geographical information. While GIScience researchers have adopted NLP methods to analyze the

textual layer of tweets, spatio-temporal analysis is virtually non-existent in NLP (very recently Volkova

et al. (2016) distinguished emotions across very coarse geolocations). Steiger et al. (2015) state that

only 4% of the publications dealing with spatio-temporal Twitter analysis come from computational

linguistics. By merely analysing the tweets’ text, temporal and spatial information is lost. Also, in

most cases NLP and GIScience methods are not directly combined, but used as two different processing

steps. One example is sentiment analysis on geo-referenced Twitter data (Bertrand et al., 2013). Here

sentiment is computed purely semantically, and its results are interpreted according to the tweets’ spatial

and temporal layers.

The work presented here aims to overcome this desideratum by applying GIScience methods in an

NLP context. The overall workflow is shown in Figure 1. The textual and spatio-temporal dimensions

of tweets are jointly used by one comprehensive graph-based semi-supervised machine learning method

to label tweets with their prevalent emotions. This setup has the benefits of being applicable to both

GIScience and NLP as well as needing only a small amount of labeled data. To create a gold standard,

we manually label a subset of our Twitter data with a set of emotion classes. To keep the task feasible,

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/

Figure 1: Workflow: In Step 1, a set of tweets is preprocessed and partly annotated in order to construct

a gold standard. Those data are used for experiments. A subset is selected and in Step 3 used to construct

a graph via similarity computing. In Step 4, a graph-based semi-supervised machine learning algorithm

classifies emotions. In Step 5, evaluation is performed.
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Portland St. and Main. on scene. #mitshooting
This is awful RT: BREAKING: MIT officer has died from his injuries. #7NEWS
I’m at Central Square (Cambridge, MA) w/2others
That just pissed me off - -

Table 1: Tweets from dataset dealing with events around Boston Marathon Bombing

we agree on a subset of Ekman’s basic emotions (Ekman and Friesen, 1971), as defined by Jack et al.

(2014): HAPPINESS, FEAR, SADNESS, and ANGER/DISGUST (merged in one category, see Section 3.2).

Additionally, we utilize a NONE class to catch all other cases.

In this paper, we focus on computing the similarity between two nodes, i.e. tweets, which is used to

construct the graph (Figure 1). The similarity score is utilized as edge weight. On the resulting graph

we apply Modified Adsorption (Talukdar and Crammer, 2009), a semi-supervised label-propagation al-

gorithm. Features are derived from and extend work on Twitter sentiment analysis and Twitter writing

style analysis such as work on authorship attribution on microblogs (Schwartz et al., 2013).

We choose the time and geolocation around the Boston Marathon Bombing because we expect to

harvest a larger fraction of highly emotional tweets than usual. See Table 1 for a few examples from our

dataset some of which express emotions. The GIScience aspects of this work are described in detail in a

companion paper (Resch et al., 2016).

2 Related Work

Emotion recognition can be viewed as a subtask of sentiment analysis (Liu and Zhang, 2012). It is, how-

ever, more complex as it addresses multiple emotions, and, hence, requires a multi-class classification

(Kozareva et al., 2007), instead of the binary or gradual polarity categories used mostly in sentiment

analysis. Sentiment analysis on Twitter data has attracted a lot of research (Strapparava and Mihalcea,

2008; Davidov et al., 2010; Bollen et al., 2011; Roberts et al., 2012; Pak and Paroubek, 2010; Brody and

Diakopoulos, 2011; Kouloumpis et al., 2011) with, e.g., several years of shared tasks at SemEval and

more than 30 participating teams at the SemEval 2016 Task 4. Still, the results are still far from perfect

and quite a bit worse than results on reviews (Nakov et al., 2016).

Existing work classifying emotions in tweets is supervised and requires large amounts of annotated

data (Roberts et al., 2012; Mohammad and Kiritchenko, 2014; Volkova and Bachrach, 2016) or heuristics

deriving emotions from hashtags to label emotions in tweets (Davidov et al., 2010). We, in contrast,

apply a semi-supervised method which requires only little annotated data. While Bollen et al. (2011)

label discrete emotions, they do not classify single tweets but examine the whole Twitter community

jointly. Roberts et al. (2012) and Bollen et al. (2011) use the temporal dimension, but neglect the spatial

dimension (georeferencing of single tweets had been introduced only in 20091).

There is only little work in NLP dealing with geolocation in tweets. Han et al. (2014), Rahimi et al.

(2015b) and Rahimi et al. (2015a) use tweets to predict geolocation, the reverse of our setting. However,

Rahimi et al. (2015a) use a model based on Modified Adsorption which is relatively close to our model.

Volkova et al. (2016) use a very coarse notion of geolocation and find differences in emotions across

different countries. Bertrand et al. (2013) use geolocation in tweets to perform sentiment analysis. They

base their work on The First Law of Geography: “everything is related to everything else, but near things

are more related than distant things” (Tobler, 1970, p.4). We also follow this law.

Our semi-supervised approach is based on the idea that similar tweets should be labeled with similar

emotions. However, approaches for computing “Semantic Textual Similarity” (Agirre et al., 2012) are

not applicable as emotions are not expressed that much through content words but through the text’s

linguistic and stylistic properties. Hence, our features are closer to ones used in linguistic style analysis

as used in, e.g., work on authorship attribution on tweets (Layton et al., 2010; Silva et al., 2011; Macleod

and Grant, 2012; Schwartz et al., 2013). Linguistic style analysis also has been applied to sentiment

analysis in tweets (Pak and Paroubek, 2010; Kouloumpis et al., 2011; Brody and Diakopoulos, 2011).

1https://blog.twitter.com/2009/location-location-location)
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everybody hates you
Does this state a fact? Is this written by someone feeling sorry someone else? Does this show anger/disgust/hate?
Can I knock out right here?
Sounds and looks emotional, but what exactly does it mean?
haha
Is that happiness? Or meant ironically and really encodes sadness?

Table 2: Tweets causing arguments among annotators. Tweet text and remarks made during discussion.

3 Data and Annotation

Existing datasets comprising short texts and emotion annotations (Strapparava and Mihalcea, 2007;

Roberts et al., 2012; Volkova and Bachrach, 2016) can not be used for our purposes as they do not

contain spatio-temporal information. The dataset by Volkova et al. (2016) contains spatio-temporal in-

formation, but the work is done on Ukranian and Russian. Hence, we create our own dataset.

3.1 Raw Data

In order to increase the likelihood that the tweets contain emotions, we collect tweets from the Boston

area in the two weeks around the Boston Marathon Bombing on April 15th, 2103. Raw data is provided

by the Center for Geographic Analysis at Harvard University which collects tweets using a public Twitter

REST Geo Search API (https://dev.twitter.com/rest/public) via spatial search queries

(Harvard University, Center for Geographic Analysis, 2016). This provides us with all georeferenced

tweets from a particular area instead of just a sample as would have been the case if the Streaming API

would have been used with spatial information (Boyd and Crawford, 2012). We select tweets from April

8th, 2013 to April 22nd, 2013, georeferenced within a bounding box containing Boston with: xmin:

-71.21, ymin: 42.29, xmax: -70.95, ymax: 42.25. Preprocessing comprises language detection by two

language detectors (McCandless, 2010; Lui and Baldwin, 2012) so that only tweets are kept which are

identified by at least one detector as English, removing tweets without content (i.e., tweets being empty

after filtering URLs and @mentions). After preprocessing 195,380 georeferenced tweets remain.

3.2 Emotion Annotation

We choose Ekman’s six basic emotions happiness, anger, sadness, disgust, surprise, and fear (Ekman

and Friesen, 1971) plus none as a basis for our annotation. These categories have been used in related

work (Strapparava and Mihalcea, 2008; Roberts et al., 2012; Purver and Battersby, 2012).

We train seven naive (neither experts in psychology nor in NLP) subjects to annotate tweets and to

perform an initial reliability study. It turns out that two annotators are not up to the task (after computing

pairwise κ (Fleiss, 1971) between annotators). So we continue with five annotators who annotated 261

randomly selected tweets. Also, the κ scores for disgust and surprise are very low. See Table 2 for a few

examples which caused arguments among annotators during the first phase of the annotation.

Hence we change the annotation manual so that the likely to be confused emotions anger and disgust
are merged, and surprise is annotated as none. This leads to the satisfying κ scores reported in Table 3.

After having refined the annotation scheme and after having established a pool of five annotators, we

proceed with randomly selecting another 385 tweets which are annotated by all five annotators. We

merge both sets of annotations to create a gold standard for our experiments. We follow Müller (2007) in

creating several gold standard levels based on the number of annotations agreeing with each other. This

way a gold standard with sufficient quality can be produced albeit at the cost of losing some annotations

(Table 4). none is the most frequent class followed by happiness. We originally expected a higher

fraction of tweets encoding anger/disgust, fear and sadness, but our two week window proved to be too

long. For our experiments we combine gold standard levels 4 and 5 which gives us 499 annotated tweets.

none 0.44 sadness 0.39 fear 0.44 anger 0.41 happiness 0.57

Table 3: κ per category for five annotators and categories
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emotion labels
# agreements anger/disgust fear sadness happiness none total

3 21 5 20 37 64 147
4 21 1 19 50 90 181
5 24 2 4 57 231 318

total 66 8 43 144 385 646

Table 4: Number of gold standard labels per emotion class and agreement level

4 Computing Similarity between Tweets

In graph-based semi-supervised learning the edge weights encode the degree of influence between neigh-

boring nodes. For emotion classification on tweets, this means that two nodes connected by a strong edge

are likely to receive the same emotion label. We define the edge weight in a way that supports this re-

lation: Similarity is the likelihood that two tweets contain the same emotion. This relation is defined

to be symmetric for each pair of tweets, which results in an undirected graph. If a tweet receives overall

similarity scores of 0 to all other tweets in the data set, it is not part of the graph and thus cannot be la-

beled. Computing this similarity, we leverage the special nature of tweets. Thus, similarity is computed

along the dimensions text (Section 4.1), time, and geographic space (Section 4.2). After intermediate

results for all dimensions are computed individually, they are combined into one score (Section 4.3).

This concept of similarity is different from others in mainly three ways: (1) It does not require semantic

analysis, because the tweets’ topic is not of interest. (2) It does not work on vector representations. (3)

To our best knowledge, it is the first similarity measure that combines the three dimensions text, time and

geo-space. We do not use vectors because they cannot be applied in our graph-based semi-supervised

learning setting.

4.1 Linguistic Similarity

The textual dimension is computed by analysing the tweet’s writing style. We assume that a similar

writing style encodes a similar emotion2. This approach is inspired by work on Twitter sentiment analysis

(Pak and Paroubek, 2010; Brody and Diakopoulos, 2011; Kouloumpis et al., 2011). Twitter authorship

analysis (Layton et al., 2010; Macleod and Grant, 2012; Schwartz et al., 2013; Silva et al., 2011) also

provides insight into writing style analysis. Research in both fields shows that although tweets are short,

unedited text, writing style analysis provides information about the user and her emotions.

Linguistic similarity between tweets is computed as follows: First, two tweets are analyzed and com-

pared with respect to specific linguistic aspects (Section 4.1.1). Second, these similarities are normalized

and aggregated and a linguistic similarity score is returned (Section 4.1.2).

4.1.1 Feature Design
The feature design is influenced by the transductive setting inherent to Modified Adsorption, which

means that there are no separate training and labeling phases and thus no model is built. Consequently,

only properties that can be (1) extracted from a single tweet or (2) computed from comparing two tweets

are suitable features. This excludes any approaches that require an analysis of the corpus as a whole, such

as language models per category or word frequencies. The features are designed to be mostly language

independent. The only language-specific resource applied is ANEW3(Bradley and Lang, 2010).

The features we apply can be divided into two major groups (see Table 5): those that compare con-

crete words and those that analyze generic style characteristics. In order to facilitate experimenting the

individual features are organized into feature groups depending on the examined grammatical entity.

2The term similar emotion is applicable in this case, because the granularity of the emotion model applied here is low. Thus,
while two tweets may be rightly classified into the same emotion class, they may in reality express different variants of a basic
emotion (cf., e.g. Shaver et al. (1987)).

3Affective Norms for English Words (ANEW) contains ratings for English words based on a dimensional approach to emo-
tions. It does not contain discrete labels, but scores for the three dimensions pleasure, arousal, and dominance (Bradley and
Lang, 2010). Although this approach is contrary to the discrete classes utilized here, ANEW’s application is still justified. For
computing similarity, we check whether the words are rated similarly along one or more dimensions.
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group feature source
words no. of same n-grams in both tweets Davidov et al. (2010)

no. of words in both tweets Davidov et al. (2010)
no. of long words (≥ 8 characters) in both tweets Schwarm and Ostendorf (2005)

hashtags any hashtag present in both tweets
no. of same hashtags present in both tweets

emojis emoji present in both
no. of same emojis present in both tweets

POS (proper) nouns (objective) vs. (personal) pronouns (subjective) Pak and Paroubek (2010)
adverbs (subjective) Pak and Paroubek (2010)
compare most frequent POS tag in both tweets
no. of same adverbs in both tweets

spelling no. of all-capital words Davidov et al. (2010)
character repetitions Kouloumpis et al. (2011)

punctuation no. of sequences of punctuation marks Schwartz et al. (2013)
no. of “!” Davidov et al. (2010)
no. of “?” Davidov et al. (2010)
no. of “"” Davidov et al. (2010)

ANEW dimensional values for full tweets

Table 5: Linguistic features

Hashtag
Number
of Occur-
rences

#Boston 2338
#boston 1756
#bostonstrong 1477
#Job 1399
#BostonStrong 1063
#Jobs 944
#bostonmarathon 731
#TweetMyJobs 672
#Marketing 591
#prayforboston 490

Hashtag
Number
of Occur-
rences

#BostonMarathon 408
#watertown 407
#redsox 373
#internship 335
#tmlt 319
#TeamFollowBack 263
#jobs 257
#Follow2BeFollowed 219
#Watertown 219
#Cambridge 206

Hashtag
Number
of Occur-
rences

#oomf 205
#RedSox 204
#SocialMedia 186
#manhunt 179
#advertising 174
#marathonmonday 167
#love 163
#spring 150
#fenway 150
#2 130

Table 6: 30 most frequent hashtags in the data set.

String Features. We use words, hashtags, and emojis returned by Owoputi et al. (2013)’s POS tagger.

We compare n-grams of different sizes, the overall number of words and the overall number of long words

(≥ 8 characters) in the two tweets. Tweets are characterized by the microblog-specific entities hashtags
(Chang, 2010) and emojis whose distribution may also indicate their emotional content. Table 6 lists

the 30 most frequent hashtags in our data. Some hashtags have emotional content (e.g. #bostonstrong,

#prayforboston). Davidov et al. (2010) regard hashtags and emojis as sentiment assigned by the user.

Kouloumpis et al. (2011) use hashtags to acquire a training set of positive, negative, and neutral tweets.

We also use hashtags as a feature to compute the similarity between tweets. Emojis have an even stronger

emotional content than hashtags. Hence, we use them for the same purpose.

Style Features. POS tags do not directly convey emotion information, but their distribution within a

text has been shown to reveal a text’s polarity (Pak and Paroubek, 2010). However, the POS tagger

used (Owoputi et al., 2013) does not tag adjectives correctly. Hence we can only use adverbs in our

feature set. Spelling features take spelling pecularities as intensifiers (Eisenstein, 2013; Kouloumpis et

al., 2011): the number of words containing character repetitions and the number of words written in only
capital letters. We take punctuation as an encoding of emotional content (as suggested by Davidov et al.

(2010)). We compare exclamation, question, and quotation marks as sequences and as counts.

4.1.2 Normalising and Aggregating Results
We normalize the results from the feature groups by applying the sigmoid function f(x) = x/(1 + |x|),
a function that does not depend on a maximum value. The normalized results from all feature groups are

aggregated. This value is normalized again to be combined with temporal and spatial similarity scores

ranging from 0 to 1 (Section 4.2). With the maximum being the number of feature groups, the aggregated

linguistic similarity score is divided by the number of groups applied.
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Figure 2: Temporal (left) and spatial similarity (right): Different α values for comparison.

sim(Ta, Tb) = ζ × simling(Ta, Tb) + β × simspat(Ta, Tb) + γ × simtemp(Ta, Tb) (1)

4.2 Temporal and Spatial Similarity

Extracting spatio-temporal information from microblogs requires methods from GIScience. Twitter can

be regarded as “a new type of a distributed sensor system”, allowing for insights into spatio-temporal

processes by generating a “geographic footprint” (Crooks et al., 2013, p.2). Using this concept of hu-

man sensors, people offer subjective observations of their environment as opposed to technical sensors

creating reproducible measurements. We utilize the concept of Twitter users as geo-sensors because it

allows to interpret tweets as observations and to relate those observations temporally and spatially to

the environment. Even though no complete model of the spatio-temporal dynamics of Twitter has been

suggested so far, previous research has operated under the assumption that Waldo Tobler’s First Law of
Geography also holds true for tweets: “everything is related to everything else, but near things are more

related than distant things” (Tobler, 1970, p.4).

Bertrand et al. (2013) show that people tweet differently during the course of a day or a week and

prove that different places are characterized by latent sentiment. This indicates a causal connection

between a person’s location and their mood. Also, the overlapping influences of temporal and spatial

patterns have to be considered. Natural disasters have been shown to create a large amount of immediate

georeferenced local responses on Twitter (Crooks et al., 2013), but also a longer-lasting world-wide echo

(Lee et al., 2011). Crooks et al. (2013, p.2) note that “people frequently comment on events happening

at or affecting their location, or refer to locations that represent momentary social hotspots”.

Although there possibly is a connection between a tweet and its origin in time and space, it is not clear

how to quantify it. Thus, we suggest a different method: Instead of modeling certain events’ influence

on the Twitter stream, we model for two tweets how likely they have been generated by the same event.

Sakaki et al. (2010) successfully model the temporal distribution of tweets commenting on a certain

event as an exponential function. We apply this approach for both the temporal and spatial layers using

f(x) = e(−α×x). Figure 2 shows the relation between two tweets depending on their temporal/spatial

distance and a decay parameter α. We suggest those values based on the assumption that two tweets are

most likely to have been triggered by the same event if they are close in time and space. In order to favor

those tweets that have been written in reaction to something the user has seen with her own eyes, we set

reference frames that contain the major part of the curves in Figure 2.

4.3 Combining The Three Dimensions

The similarity scores for all dimensions are combined linearly (Equation 1; simling(Ta, Tb) denotes

the linguistic similarity between two tweets a and b). The individual results’ weights are defined by
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micro-average macro-average
features P R F P R F
ling. hashtags 0.6388 0.6388 0.6388 0.1277 0.2 0.1559

punctuation 0.6388 0.6388 0.6388 0.1277 0.2 0.1559
spelling 0.6388 0.6388 0.6388 0.1277 0.2 0.1559
ANEW 0.6412 0.631 0.636 0.1282 0.1975 0.1555
emojis 0.6825 0.6825 0.6825 0.2729 0.2506 0.2613
POS 0.6388 0.6388 0.6388 0.1277 0.2 0.1559
words 0.6388 0.6388 0.6388 0.1277 0.2 0.1559
emojis, hashtags 0.6825 0.6825 0.6825 0.2729 0.2506 0.2613
emojis, punctuation 0.6825 0.6825 0.6825 0.2729 0.2506 0.2613
emojis, spelling 0.6825 0.6825 0.6825 0.2729 0.2506 0.2613
emojis, ANEW 0.6858 0.6151 0.6485 0.1372 0.1925 0.1602
emojis, POS 0.68 0.6746 0.6773 0.2665 0.2432 0.2543
emojis, words 0.6967 0.6746 0.6855 0.3222 0.2432 0.2772

comb. emojis, temporal 0.6388 0.6388 0.6388 0.1277 0.2 0.1559
comb. emojis, spatial 0.6825 0.6825 0.6825 0.2729 0.2506 0.2613
comb. emojis, spat., temp. 0.6825 0.6825 0.6825 0.2729 0.2506 0.2613
random baseline 0.2137 0.2566 0.2332
majority baseline 0.6388 0.6388 0.6388

Table 7: Results using Modified Adsorption, agreement level 4, minimum edge weight 0.5

Im a pretty girl. Find me ;)
cause we always talk about you :)
awww lmao homie ok :) I don’t mind you making fun of me either haha ..
Had a great time at Lauren’s art reception today. My friends have such talent :-)

Table 8: Tweets correctly labeled with happiness

weighting parameters ζ, β, and γ. An additional parameter influences the resulting graph’s layout. To

exclude noisy edges that do not carry information but bloat the graph, we apply an edge weight threshold.

Consequently, only edges whose weight is equal to or higher than this threshold are included in the graph.

5 Experiments

For the experiments we use the gold standard constructed in Section 3 divided into 50% seed data for

the semi-supervised graph-based machine learning algorithm and 50% testing data. Graph construction

is guided by the similarity computation method described in Section 4. Classification is performed by

Modified Adsorption, the semi-supervised label propagation algorithm implemented in the Junto-toolkit4

(Talukdar and Crammer, 2009).

From the gold standard we use level 4, i.e. all tweets which have been annotated with the same label

by at least four out of five annotators. This way we make use of more than 75% of the annotated data

while ensuring high quality annotations for learning and evaluation. In addition we use 10,000 unlabeled

tweets for learning. We set the threshold for edges (minimum weight) to 0.5.

In Table 7 we report the results in terms of micro- and macro-average precision, recall and F-measure.

Since the classes have a skewed distribution, results for micro- and macro-average show a large differ-

ence. We apply McNemar’s test to report statistically significant differences (Dietterich, 1998). Random

and majority decisions serve as baselines for comparison. The macro-average results should be compared

with the random baseline, the micro-average results with the majority baseline.

Most of the linguistic features taken on its own perform just like the majority class classification, i.e.,

they classify each tweet as none. Only ANEW and emojis manage to classify some tweets differently.

With ANEW this leads to a slight decrease in performance, with emojis to an improvement (statistically

significant improvement in recall). A closer inspection of the results shows that both features pick up

on the second largest class and label some tweets correctly with happiness. See Table 8 for some tweets

correctly labeled with happiness in the final setting.

When combining the strongest linguistic feature emojis with other lingustic features, ANEW and POS

4github.com/parthatalukdar/junto
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lead to slight decrease in performance while combining emojis and words achieves the best results in

F-measure which is due to a higher precision. Adding further linguistic features does not cause any

improvement.

Temporal and spatial features on their own do not classify anything correctly. When combining emojis
with temporal features (with a range of different values for α) we observe a drop in performance. When

combining with spatial features and with spatial and temporal features, there is no difference to just emo-
jis. Further experiments with temporal and spatial features show that they lead to a small but statistically

not significant improvement when weighted much higher than linguistic similarity (e.g. × 5). Highest

values for α performed best (i.e. lowest curves in Figure 2).

6 Discussion

Our research allows an interesting glance into the way emotions are displayed in microblogs: While

we expected prevalent emotions to be negative because of the terrorist attack that took place during the

time span we examined, Table 4 shows that the opposite is true. Table 6 provides a possible explanation

for this: hashtags such as #bostonstrong can mask negative feelings. We evaluate our method using

micro- and macro-averaged precision, recall, and F-measure (Tsoumakas et al., 2010). Experiments show

that we can recognize none and happiness better than suitable baselines. The overall best-performing

feature group was emojis. Our analysis of tweets revealed that negative emotions frequently cause tweets

conveying a positive emotion. This leads to a skewed seed distribution (Table 4), and hence infrequent

labels are rarely assigned at all. This phenomenon requires further research. Random selection of seed

tweets may not have been such a good idea, because only very few of our seeds are temporally or spatially

close enough. Further experiments should check whether a tighter spatial and temporal distribution of

the seed tweets would enable the temporal and spatial features to have a positive impact. For now

we have to conclude that linguistic features are superior to temporal and spatial features for Twitter

emotion classification. Future research should define improved linguistic features and search for optimal

temporal/spatial parameter settings.
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